1

Application of learning techniques to planning is an area o
long standing research interest. Most work in this areatie-d
has however focused on learning either search control know

Learning Probabilistic Hierarchical Task Networks to Capture User Preferences

Nan Li, Subbarao Kambhampati, and Sungwook Yoon
School of Computing and Informatics
Arizona State University
Tempe, Arizona 85281 USA
nan.li.3@asu.edu, rao@asu.edu, Sungwook.Yoon@asu.edu

Abstract

While much work on learning in planning focused
on learning domain physics (i.e., action models),
and search control knowledge, little attention has
been paid towards learning user preferences on de-
sirable plans. Hierarchical task networks (HTN)
are known to provide an effective way to encode
user prescriptions about what constitute good plans.
However, manual construction of these methods is
complex and error prone. In this paper, we propose
a novel approach to learning probabilistic hierar-
chical task networks that capture user preferences
by examining user-produced plans given no prior
information about the methods (in contrast, most
prior work on learning within the HTN framework
focused on learning “method preconditions™—i.e.,
domain physics—assuming that the structure of the
methods is given as input). We will show that
this problem has close parallels to the problem of
probabilistic grammar induction, and describe how
grammar induction methods can be adapted to learn
task networks. We will empirically demonstrate the
effectiveness of our approach by showing that task
networks we learn are able to generate plans with
a distribution close to the distribution of the user-
preferred plans.

Introduction

f

is considered a valid HTN plan if and only if it (a) is exe-
cutable and achieves the goals and (b) can be produced by
reducing non-primitive tasks. While the first clause focuse
on goal achievement, the second clause ensures that the plan
produced is one that satisfies the user preferences.

For the example in Figure 1, as specified, the top level goal
of traveling from a source to a destination can be achieved
either by Gobytrain which involves a specific sequence of
tasks, orGobybus In contrast, the plan of hitch-hiking from
the source to the destination, while executable, is notidens
ered a valid plan. The reduction schemas can be viewed as
providing a “grammar” of desirable solutions, and the plan-
ner’s job is to find executable plans that are also grammati-
cally correct.

While HTNs can be used to specify the grammar of user-
desired solutions, manual construction of the HTNs is com-
plex and error prone. In this paper, we focus on learn-
ing this grammar, given only successful plans known to be
acceptable to the users. Our approach takes off from the
accepted view of task reduction schemas as specifying the
grammar of desirable solutioi@eib and Steedman, 2007;
Kambhampatiet al, 1999. We extend this understand-
ing in two ways: First, we consider weighted task reduc-
tion schemas. That is, each reduction schema for a goal is
associated with a probability specifying the users prefer-
ence for that particular reduction. This is a useful general
ization as we can now capture the degree of user’s prefer-
ence for a specific plan (instead of just a binary preference
judgement): Second, we exploit the connection between re-
duction schemas and grammar by adapting the considerable
work on grammar inductiofCollins, 1997; Charniak, 2000;
Lari and Young, 199D Specifically, we view the sample plan
races as sentences generated by a target grammar of schemas

nd develop an expectation-maximization (EM) algorithm fo

edge, or domain physics. Another critical piece of knowkedg learning task reduction schemas for that grammar.

needed for plan synthesis is that of user preferences abeutd
sirable plans, and to our knowledge there has not been a
work focused on learning it. It has long been understood th

users may have complex preferences on plans (Bhier

and Mcllraith, 200§). Perhaps the most popular approach
for specifying preferences is by hierarchical task network

We emphasize that our focus is only on capturing user pref-
rences, and not on learning about feasibility. User prefer
nces need not be based on feasibility; indeed a user having

preferences based on feasibility is akin to the fox in Aesop’
fable of Sour Grapes. A preferred plan may thus not neces-
sarily be executable. In the travel example, a plan to take th

(or HTNs), where in addition to the domain physics (in termsyain” will be a preferred one, but may not be executable if
of primitive actions and their preconditions and effecta}

there is no train station. It is the responsibility of therpiar

planner is provided with a set of non-primitive actionskgs
and methods for reducing them into combinations of primi- INote that it is trivial to get non-weighted reduction schema
tive and non-primitive actions. Figure 1 shows a set of HTNSrom weighted ones, if so desired—just keep all schemas ehos
for a travel domain. A plan (sequence of primitive actions)weights are over a certain threshold and ignore their weight

Travel(spurce,dest)
\ Table 1: Ordered probabilistic hierarchical task netwdiks
Chomsky normal form) in the travel domain
Gobybug(source,dest) GobyTrain(source,dest)
Primitive actions:Buyticket, Getin, Getout, Hitchhike;
Non-primitive actionsT'ravel, A1, A2, Az, B1, Ba;

Getin(bus.source) Buyticket(bus) Getout(bus,dest) Travel — 0.2, A2 B1
Travel — 0.8, A1 B
Hitchhike(source.dest) By — 1.0, A; As
Bz — 1.0, A2 A3
. A1 — 1.0, Buyticket
Figure 1: Hierarchical task networks in a travel domain. 4, _, 1.0, Getin

Az — 1.0, Getout

Buyticket(train) Getin(train,source) Getout(train,dest)

to ensure that the most preferred executable plan is returné
[Baier and Mcllraith, 200B (It could however be possible In this work, we simplify the learning task further by fo-
to combine preference and feasibility learning schemess; secusing on learning parameter-less schemas. The assumption
Section 5 for a discussion.) is reasonable in domains such as the travel domain, but does
In the following sections, we start by formally stating the not work with domains like Blocks World, where the action
problem of learning probabilistic hierarchical task netk® sequences are differentiated by bindings. We also assiate th
(PHTNSs). Next, we discuss the relations between probabilisthe user preferences can be expressed as unconditional pH-
tic grammar induction and pHTN learning. After that, we TNs. Thus we disallow reduction schemas of the forif, “
present an algorithm that acquires pHTNs from example plagou are in Europe, prefer trains more than plariés This
traces. The algorithm works in two phases. The first phasensures that pHTNs correspond to context free grammars.
hypothesizes a set of schemas that can cover the training ex-
amples, and the second is an expectation maximization phage | earning pHTNs
that refines the probabilities associated with the scheivas.
then evaluate the effectiveness of our approach by congpari
the distributions of user-desired plans and the plans medu

t is clear that the pHTN as defined above has strong simi-
arity to probabilistic context free grammars (PCFG). T&her

from our learned task networks. We conclude with a discus!S & 0n€-to-one correspondence between the non-terminals o

sion of the related work and a summary of our contributions.” SFCG and the HTN non-primitive symbols. Rather than de-
veloping pHTN learning algorithm from the scratch, we will

e . . exploit existing techniques for PCFG induction. In particu
2 Probabilistic Hierarchical Task Networks lar, expectation maximization (EM) is the weapon of choice

We define a pHTN domaiff, as a 3-tuplell = (A, N A, S), when it comes to PCFG induction and we shall use it also for
where A is a set of primitive actionsN A is afset of ncZn— learning pHTNI[Lari and Young, 199D The pHTN learning
primitive actions, and is a set of reduction schemas indexed Problem does differ from existing work on PCFG induction in
by non-primitive actions. We follow the normal STRIPS se- SOMe critical respects. For example, we assume that the inpu
mantics for the primitive actions. Each non-primitive aati t© the algorithm is just a primitive action sequence, withou
na; € NA is associated with a set of reduction schemas@ny @nnotations about non-primitive actions. As discussed

Each reduction schemg can be seen as a 3-tuple,a; — in the following section, our algorithm invents non-priivé

p, dec), wheredec is an ordered list of primitive and non- symbols as needed. We are not aware of any PCFG learning
primitive actions, and is the probability of choosing that StUdy th"i‘td'.rethly works in s]ych asetup. h
decomposition. This probability specifies the preferenice o OUr algorithm consists of two parts. First, we have a
the user. Without loss of generality, we restrict our attent 9réedy structure hypothesizer, which creates non-priniti
to reduction schemas in the Chomsky normal form, with eac$YmMbols, and associated reduction schemas, as needed to
schema decomposing a non-primitive task to either two non¢0ver all the training examples. The key guiding principle
here is the parsimonious generation of reduction schemas in
Travel domain presented in Figure 1, Table 1 shows an exanfz10msky normal form. In the second phase, an expectation-
ple of the pHTN decomposition rules. According to these, thdN@ximization approach is used to iteratively refine the prob
user prefers using train (80%) to using bus (20%). abilities of the reduction schemas.

A problem R for a pHTN domainH is a pair of states 3 1 Greedy Structure Hypothesizer (GSH)

R = (I,G), I 'is the initial state(F is the partial description . . .
of the desired goal state. A primitive action sequeniga 1 he Pseudo code for the GSH algorithm is shown in algo-

valid solution toH andR if o can be executed frorhleading ~ "thm Il. GSHb'ea”_“_S Ir_e_ductiﬁ)n rulr(]as in a bottomr-]up fash-
to a state wheré holds, and there is some reduction procesdOn- It starts by initializing the schema sétto schemas

in H that derives> from the top level goal. The probability 2ssociated with primitive actions. Next the algorithm de-
of p(o) is Z_DEC Wyecepre pldec), whereDEC is all the tects whether there are recursive structures embeddee in th

decomposition processes that can generate plans, and learns a recursive schema for them. Recursive

We can now state the pHTN learning problem formally structures are of the form of continuous repetitions of a sin
Given a seD : 01,0, - - - 0y, Of training plans (each of which "gle terminal/non-terminal action with another terminafno

are sequences of primitive actions satisfying the goal}j fin terminal action appearing once before or after the repatti
a set of pHTNsH' that most likely generates the observed 2Note that the condition we are talking about is on the prefese
primitive action sequence. Thu#! = argmazg p (O | H). rather than method applicability/feasibility.

such asa, a, ..., a,b} and{a, b, b, ...b}. If both the length of “Ajgorithm 1: G'SH constructs an initial set of reduction
the repetitions and the frequency the repetitions appgatin schemass, from the plan examples).
the plans meet the minimum thresholds, a recursive streictur -

Input: Plan Example Seb.

is said to be detected. The thresholds are decided by both %~ primitive action reduction schemas;
the average length of the given plans and the total numbes | 1iie not-all-plans-are-parsable?, S) do

of plan examples. For instance, in plén;, as, as, as, as} 3 if has-recursive-schem@j then

(wherea denotes either a primitive or non-primitive action), 4 | s := generate-recursive-schergy(
{a1, a9, ag, as} and{as, aa, an, 3} are considered as re- s else
cursive structures. After identifying a recursive struetihe 6 | s:=generate-most-frequent-sched(

structure learner can construct a recursive schema out of it end
Take {1, s, a2, a2} as an example, the acquired schema3 S=5+s; ,
for it would bea; — a; ao. 9 O := update-plan-set-with-schend(.S);
If the algorithm fails to find recursive structures, it start 20 end G
to search for the action pair that appears in the plans mok; S = initialize-probabilitiesg);
frequently, and constructs a reduction for the action peor. 2 "étum S
build a non-recursive schema, the algorithm will introdace
new symbol and set it as the head of the new schema. After
getting the new schema, the system updates the current pla@de, denoted as(T' | O, H).
set with this schema by replacing the action pairs in thegplan To do this, the algorithm computes the most probable parse
with the head of the schema. tree for each plan example. Any subtree of a most probable
Having acquired all the reduction schemas, the strucparse tree is also a most probable parse subtree. Therefore,
ture learning algorithm assigns initial probabilities fhese ~ for each plan example, the algorithm builds the most prababl
schemas. Note that for consistency, the sum of probabiliparse tree in a bottom-up fashion until reaching the stant sy
ties associated with all ways of reducing a non-primitiekta bol g. For the lowest level, since each primitive action only
must add up to 1. Thus, if there areeduction schemas with associates with one reduction schema of the ferm— a,
the same head symbol, then each of them are assigned tHte most probable parse trees for them are directly recasled
probability L. To break ties among reduction schemas withtheir only associated primitive reduction schemas. Fonéig
the same head, GSH adds a small random number to ea@Vels, the most probable parse tree is decided by
probability and normalizes the values again. This output of
GSH is a redundant set of reduction schemas, which is sent
to the EM phase.

s,i =argmazs; p (s | H)*p(T(o1, H)| o1, H)

. . . *p (T(02, H) | 02, H). (1)
Example: For example, in a variant of the travel domain,) _)
where the traveler can buy a day pass and take the train multi- whereo is the current action sequenea, as, . . . a,; s is
ple times, two training plans are shown on the top right in Fig & reduction schema of the form,,: — a; a,, which spec-
ure 2. Primitive schemasl, — Buyticket, A» — Getin, ifies the reduction schema that is used to parae the first
Az — Getout, are first constructed for each action. Updatedlevel; i is an integer betweeh to n, which determines the
plans are shown as level 2 in Figure 2. Next, sideels is place that separatesinto two subtracesQl and os. o1 is
the most frequent action pair in the plans, the structure hythe action sequencey, as, .. .a;, andoz is the action se-
pothesizer constructs a ruly — A, Aj. After updat- quencea;ii,...a,. After getting s and i, the most probable
ing the plans with the new rule, the plans become, (S:) parse tree of the current trace consists,Qf; as the root, and
and (4,, Si, S1, S1) as shown as level 3 in Figure 2. Next, the most probable parse trees for the subtradtés,, /) and
GSH detects a recursive structure in plan (S, S1, S1)and ~ T'(o2, H), as the left and right child of the root. The proba-
learns aruled; — A; S;. At this point, since all of the bility of that parse tree isp (s | H) * p (T'(01, H) |01, H) x
plans are parsable by existing schemas, GSH stops construgt(7' (o2, H) | 02, H). This bottom-up process continues until
ing new rules. All of the rules constructed in this exampke ar it finds out the most probable parse tree for the entire plan.

shown in the bottom left in Figure 2. Note that the algorithm stated above constructs a parse tree
even if the probability associated with it is 0. In order te re
3.2 Refining Schema Probabilities: EM Phase duce the complexity of the E step, parse trees that depend

_ . . I on reduction schemas with O probabilities are directly pdin
The probabilities associated with the initial set of schema . 0+ calculating the most probable parse subtrees.

?neanxeirrr?itzezgi g%/ atlheor(i?hSmH g?ﬁg: azlilrel ;ﬁlii%gg C%anggtaggwAfter getting the parse trees for all plan examples, the al-
9 : P P 9€N4 orithm moves on to the M step. In this step, the algorithm

Zra;ergeb%; égeaggcegtzguvﬁt'ﬁ?tSCHhoeWrg?/Z’retizhtgggigﬁehagpdates the selection probabilities associated with theae
P y y tion schemas by maximizing the expected log-likelihood of

the example plang are not provided. Therefore, we consider the ioint event
T as the hidden variables. We will use T(o, H) to denote the]
parse tree of a plan exampbegiven the reduction schemas
H. The algorithm operates iteratively. In each iteration, it 7, — argmazy, S p(T |0, Hy)logp (O, T | Hy) (2)
involves two steps, an E step, and an M step.

In the E step, the algorithm estimates the values of the hid- whereH,, stands for the probabilities of reduction schemas
den variableg", which, in this case, are the tree structuresin then!" iteration. For a reduction schema with hegdthe
associated with each plan example with sympak the root new probability of getting chosen is simply the total number

Example Plans: Al — 4

(Buyticket, Getin, Getout) a

(Buyticket, Getin, Getout, Getin, Getout, Getin, Gelout) Al

Constructed schemas: A1‘/ N A
Primitive actions: Buyticket, Getin, Getout;

A= A4 S

ql 41 Jll S1 S1 S1 —» 3 §1 —»3
i — 19 [T

_1] — Bu f,;% + '\ '\ '\ '

a1 uyncre Al A2 A3 A2 A3 A2 A3 B 2 A1 A2 A3 2
Ay — Getin Y Y VY Y VYV Y LA B /
Aa— Getout Buyticket GetinGetout Getin Getout Getin Getout®< 1 Buyticket Getin Getout = 1

Figure 2: Example illustrating the operation of Greedy 8tute Hypothesizer (see text)

of times that schema appearing in the parse trees divided kg identical and goes potentially to infinity if the distribans
the total number of times; appearing in the parse trees. differ significantly.

After finishing the M step, the algorithm starts a new itera-)))
tion until convergence. The output of the algorithm is a $et 04.1 Experiments in Randomly Generated Domains

probabilistic reduction schemas. In these experiments, we first randomly generate a set of
recursive and non-recursive schemas, and use thefi*as
non-recursive domains, the randomly generated schemas
m a binary and-or tree with the goal as the root.The proba-
jlities for the schemas are also assigned randomly (and nor
alized so that probabilities of all the schemas with theesam
ead sum to 1). Generating recursive domains is similar with
e only difference being that 10% of the schemas generated
re recursive. We also varied the size of the given schemas
y the number of non-primitive actions. The number of train-

g plans, and the number of testing plans are adjusted ac-
cordingly. For instance, if the input schemas contaimon-
primitive actions, the number of training plansli@n, and the

.. . number of testing plans i$00n For each schema size, we

4 Empirical Evaluation averaged our results over 100 randomly generated schemas

To evaluate the ability of our approach to learn pHTNs, weOf that size.

designed and carried out experiments in both synthetic anflte of Learning: In order to test the learning speed, we
benchmark domains. All the experiments were run on a 2.1§st measured KL divergence values with 15 non-primitive
GHz Windows PC with 1.98GB of RAM. Although we focus ctions given different numbers of training plans. The ltssu
on learning accuracy rather than cpu time, we should clarifyyre shown in Figure 3(a). We can see that even with small
up-frontthat the cpu time for learning was quite reasonable , mper of training examples, our learning mechanism can
ranged between 0 to 44 milliseconds per domain per trainingsj|| construct pHTN schemas with KL divergence no more
plan. _ _ than 0.2. As the number of training cases increases, our al-
Evaluation presents special challenges as we need t0 Sggyithm learns better schemas. However, the learning rate
whether our algorithm is able to adequately capture usér pregiows down. Note that we did not report the KL divergence
erences. We avoided costly direct user studies through agith very small number of training examples. This is because
oracle-based experimental strategy: we assume access to {jnen the training plans provided are not enough to represent
ideal PHTN schemas capturing user preferencés. We the structures embedded in the target schemas, the learned
use [/* to generate training examples which are fed to theschemas will not be able to generate plans with those uncov-
learning algorithm. The pHTN schemas learned by our algogreq structures. In this case, KL divergence will be infinity
rithm, H' are then compared t&*. The main comparison))
between the two schema sets is in terms of the distribution dgffectiveness of the EM Phase:To examine the effect of
plans they generate. Additionally, we also compare them ithe EM phase, we carried out experiments comparing the
terms of number of non-primitive actions used, since redunKL divergence betweefP- and Py:; as well as the KL
dant schemas may lead to overfitting, and can also slow dowdivergence betwee®y- and Py, (Figure 3(b) and Fig-
the preference computation at runtime. ure 3(c)), wheref? is the set of schemas generated by the
To compare the distribution of the plans generated#sy ~ greedy hypothesizer, which are subsequently refined by the
and H', we use Kullback-Leibler divergence measure, de-EM phase mto‘ll._lnlspecu%n rev_eals_thgt alth_ough_tiﬁL dtlver-
: N P (i ence increases in larger domains, in domains without recur
fined asDx 1. (Pu-||Put) = i Pr-(i)log 7 ((z))’ where give schemas, KL divgrgence between the original plan dis-
P andPy- are distributions of plans generated By and tribution (Py-) and the learned plan distributio®f;:) is no
H* respectively. This measure goes to 0 if the distributionmore than 0.066 with 50 non-primitive actions. This is much

Discussion:Notice that although the EM step does not intro-
duce new reduction schemas, it deletes redundant reducti ﬁr
schemas by assigning low or zero possibilities to them. W
also note that learning preferences from example traces c
suffer from overfitting problem: By generating exact reduc:—h
tion schemas for each example plan, we will get the reduc;
tion schemas that produce only the training examples. Ou
greedy schema hypothesizer addresses this issue by dgtect
recursive schemas to avoid overfitting, and by constructin
schemas giving preference to frequent action pairs to edu
the total number of non-primitive actions in schemas.

0.3 1 1 2
Non-recursive Schemas| Greedy Schemas Greedy Schemas
0.25}| = = = Recursive Schemas

Non-recursive Schemas|
= = = Recursive Schemas

= = = Learned Schemas After EM = = = Learned Schemas After EM

02K

0.15 Semem oo
0'1¥
0.05

o
15 30 45 60 75 90 105 120 135 150 5 10 20 30 40 50 5 10 20 30 40 50 5 10 20 30 40 50
Number of Training Plans Number of Non-primitive Actions Number of Non—primitive Actions Number of Non-primitive Actions

@) (b) (© (d)

KL Divergence

Figure 3: Experimental results in synthetic domains (a) Kiidbgence values with different number of training plars. KL
Divergence between plans generated by original and leatieeinas imon-recursivedomains. (¢) KL Divergence between
plans generated by original and learned schemeecursivedomains. (d) Measuring conciseness in terms of the ratiodst
the number of actions in the learned and original schemas.

smaller than the KL divergence 0.818 between the original
plan distribution and the plan distribution that would b&ge
erated by the schemas _OUt.pUt b)/ -the GSH ph&se). The Primitive actionsioad, fly, drive, unload,
EM phase is thus effective in refining? to H'. Non-primitive actionsmovePackage, So, Si, Sa,

S3,84, S5;
movePackage — 0.17, movePackage movePackage

Table 2: Learned schemas in Logistics

Conciseness of Learned Schemashe conciseness of the

schemas is also an essential factor measuring the quality of ,54¢ Package — 0.25, So Ss S5 — 1.0, S3 So
the schemas, since by ignoring it one can trivially gener- movePackage — 0.58, So Sa S4 — 1.0, S1 S2
ate schemas with low KL divergence by continuously adding Sy — 1.0, load S1 — 1.0, fly

new schemas for each training plan. To measure concisenessS: — 1.0, unload Ss — 1.0, drive

we compute the ratio between the number of actions in the
learned schemadd(') and the original schemagi(). Fig-
ure 3(d) presents the results. We can see that with less ¢han X ;
non-primitive actions in a domain, the constructed schemaBY Plane over moving by truck, and a preference for using
have only 1 or 2 non-primitive actions more than the originall€SS Number of trucks and planes (less steps in the plan).
schemas. This is acceptable, since even manually corestruct, 1he KL divergence between the original schemas and the
schemas may be of different sizes and are usually not the mol§a"ned schemas in this domain is 0.04. Table 2 shows
concise schemas. However, the ratio increases to 1.6 whé&¢hemas learned from the training plans. We can see that the
the original schemas contain 50 non-primitive actions,clhi generated schemas successfully captured both the s&uctur

would not be considered sufficiently compact in capturirgg th @nd the preference in the input plans. The second and third
structure of schemas. Future work in structural learning ma Scheémas fomovePackagshow that you can move a package
be able to alleviate this problem. either by plane or by truck. The first schema is a recursive

case which means that you can repeatedly move the package
Effect of Recursive SchemasWe note that KL divergence until reaching the destination.
for domains with recursive schemas is larger than that fer do
mains without recursive schemas. This is because in domairgold Miner: The second domain we used is Gold Miner. It
that contain recursive schemas, the plan space is infirfite. T is a domain that is used in the learning track of the 20084nter
finite number of plans generated by these schemas is not abi@tional Planning Competition, in which a robot is in a mine
to represent the exact distribution embedded in the schemagnd tries to find the gold inside the mine. The robot can pick
Even for two sets of plans generated by the same schemagp bombs or a laser cannon. The laser cannon can destroy

;hese training plans show a preference for moving packages

KL divergence is not zero. both hard and soft rocks, while the bombs can only penetrate
soft rocks. Moreover, the laser cannon will also destroy the
4.2 Benchmark Domains gold if the robot uses it to uncover the gold location. The de-

sired strategy for this domain i€)) get the laser cannon, 2)

In addition to the experiments with synthetic domains, we . i
also picked two of thg well known ber¥chmark planning do_shoot the rock until reaching the cell next to the gold, 3)ajet
bomb, 4) use the bomb to get gold.

mains and developed Chomsky normal form pHTNSs for them. > N .
b Y P The training schemas have 12 non-primitive actions and

Then we generated training plans and evaluated the leamir@primitive actionsmove getL aserCannorshoot getBomb

algorithm on them. andgetGold We gave the system 100 plans of various lengths
Logistics Planning: The domain we used in the first exper- generated by these schemas. Table 3 shows the schemas
iment is a variant of the Logistics Planning domain, insidelearned for this domain. The KL divergence between the orig-
which both planes and trucks are available to move packagemal and learned schemas in this domain was relatively high
There are 11 non-primitive actions, and 4 primitive actjons at 0.52. This can be explained by the significantly higher re-
load, fly, drive and unload in this domain. We presented cursion inthe schemas in this domain. Nevertheless, idg ea
100 training plans to the learning system. The training planto see that the learned schemas do prefer plans that obey the
consist of different ways of moving a package. Moreoverdesired strategy, while the number of moves the robot needs

6 Conclusion
Despite significant interest in learning in the context @fpl

Table 3: Learned schemas in Gold Miner

Primitive actionsimove, get Laser Gun, shoot, ning, most prior work focused only on learning domain
_— getBomb, getGold, physics or search control. In this paper, we motivated the

Non-primitive aCt'O”S%"aléSOéSlﬁ% need for learning user preferences. Given a set of example

32495, 96, plans conforming to user preferences, we developed a frame-

goal — 0.78, So goal goal — 0.22, S Ss . S . .

So — 1.0, move Sy — 0.78, i Ss work for learning probabilistic HTNs that are consistentwi

S1 — 0.22, getLaserGun S5 — 1.0, Sz So these examples. Our approach draws from the literature on

S2 — 1.0, shoot Se — 1.0, S3 Sy probabilistic grammar induction. We provided a principled

S3 — 0.71, S3 So S3 — 0.29, getBomb empirical evaluation of our learning techniques both in-syn

Ss — 1.0, getGold thetic and benchmark domains. Our primary empirical evalu-

ation consisted of comparing the distributions of plansagen

to get the gold varies in cases. Specifically, the plans S(,m,}a_ted from the learned schemas and target schemas (presumed

tioned by the learned schemas start by moving to get the las
cannon, followed by shooting all the rocks using the lase
cannon, and finish by using the bomb to get the gold.

Q represent the user preferences), and demonstrates-the ef
ectiveness of learning.

We are currently extending this work in several directions,
including learning parameterized pHTNs, learning condi-
. . tional preferences, exploiting partial schema knowledys a
5 Discussion and Related Work handling the “feasibility” bias in the training data (whiéh
In the planning community, HTN planning has for long beencaused by the fact that we learn only from successful plan
given two distinct and sometimes conflicting interpretasio traces, and some of the plans preferred by the user may have
(c.f. [Kambhampatet al,, 1999): it can be interpreted either been filtered out because of infeasibility).
in terms of domain abstraction (with non-primitive actions . -
mediating access to the executable ones) or in terms of us@cknowledgments: The authors would like to thank William
preferences (with HTNs providing a grammar for the squ-Ceur?]ri‘r']régt‘;]ci’g ?&‘)’ﬁ(r all?aerlrﬁ)liwadnl?pcgtis’:Icr)erz]sseaarr]ghsrsggjsgglrltzgci)n
tions desired by the user). While the original top-down HTN .
planners have been motivated by the former view and ainﬁ?art by ONR grants N00014-09-1-0017 and N00014-07-1-
at higher efficiency than primitive action planning, thedat +049, and the DARPA Integrated Learning Program (through
view has lead to the development of bottom-up HTN planner& Sub-contract from Lockheed Martin).

[Barrett and Weld, 1994 and explains the seeming paradox

of higher complexity for HTN planning (afterall, finding ~ References

plan cannot be harder than finding one that satisfies complegaier and Mcllraith, 2008 Jorge A. Baier and Sheila A. Mcllraith.

preferences). _ . Planning with preferencel Magazine 29(4):25-36, 2008.
Despite this dichotomy, most prior work on learning HTN [Barrett and Weld, 1994 Anthony Barrett, Daniel S. Weld: Task-

models (e.g[lighamiet al, 2002; Langley and Choi, 2006; Decomposition via Plan Parsing. AAAI 1994: 1117-1122
Yang et al, 2007; Hogget al., 200§) has focused only on

the domain abstraction angle. Typical approaches here ré(—:ham'ak’go%%gfgzeonoeocmm'ak' A maximum-entropy-inspired

quire the structure of the reduction schemas to be given as pe.1rser. roc oo -) o

input, and focus on |earning app||cab|||ty conditions fhet [Collins, 1997 Ml_chael CO”I_nS. Three generative, lexicalised

non-primitive tasks. In contrast, our work focuses on learn ~ models for statistical parsing. In ProgCL. 1997.

ing HTNs as a way to capture user preferences, given onl{Geib and Steedman, 200Thristopher W. Geib and Mark Steed-

successful plan traces. The difference in focus also explai man. On natural language processing and plan recognitioe. P

the difference in evaluation techniques. While most prasio ~ JCAI, 2007.

HTN learning efforts are evaluated in terms of how close thgHogget al, 200§ Chad Hogg, Héctor Mufioz-Avila, and Ugur

learned schemas and feasibility conditions are to the hctua Kuter. Htn-maker: Learning htns with minimal additionaldwi-

schemas, we focus on the distribution of plans generated by edge engineering required. PrécdAl 2008.

the learned and original schemas. [lighamiet al, 2003 Okhtay. lighami, Dana S. Nau, Hector
An intriguing question is whether pHTNs learned to cap- "Mufoz Avila, and David W. Aha. Camel: Learning method pre-

ture user preferences can, in the long run, be over-loaded conditions for HTN planning. Pro&IPS 2002.

with domain semantics. In particular, it would be i“tere_St'[Kambhampatét al, 1994 Subbarao Kambhampati, Amol Mali
ing to combine the two HTN learning strands by sending and Biplav Srivastava. Hybrid planning for partially hieghi-
our learned pHTNSs as input to the existing feasibility learn cal domains. ProcAAAl, 1998.

ers. The applicability conditions that are learned on the-no
primitive actions can then be used to allow efficient top-dow
interpretation of user preferences. _ . _—
As discussed in[Baier and Mcllraith, 2008 besides ['-art' a“hd Ytqung, %99thK- Lari and S. J. Yountﬂ' Thgdestlm;tlgn o
HTNs, there are other representations, such as trajeatory ¢~ S-ocnastic context-iree grammars using the Insioe-cerialgo-
straints expressed in linear temporal logic, for expressser rithm. Computer speeCh and Language3s-56, 1_990' o
preferences. It will be interesting to explore methods forlYangetal, 2009 Qiang Yang, Rong Pan, and Sinno Jialin Pan.
learning preferences in those representations too, antbsee ~L€arming recursive htn-method structures for plannindCIPS
what extent common user preferences are naturally express- "Workshop on Al Planning and Learning. 2007.
ible in HTNs.

[Langley and Choi, 2046 Pat Langley and Dongkyu Choi. A uni-
fied cognitive architecture for physical agents. PA8AIL 2006.

